
SCOUG
Miscellany

Greg Smith

January 21, 2017

Greg Smith SCOUG January 21, 2017 1 / 19



Some Comments About Passwords

A server asking your password should not have your password saved
anywhere in plain text. At the very least, it should be salted and hashed.

From http://mathworld.wolfram.com/HashFunction.html

Definition: A hash function H projects a value from a set with many (or
even an infinite number of) members to a value from a set with a fixed
number of (fewer) members. Hash functions are not reversible.

Common hash functions include:

MD5 −→ maps a message to 128 bits

SHA1 −→ maps a message to 160 bits

SHA256 −→ maps a message to 256 bits

SHA512 −→ maps a message to 512 bits

Tiger −→ maps a message to 192 bits

Whirlpool −→ maps a message to 512 bits

Greg Smith SCOUG January 21, 2017 2 / 19

http://mathworld.wolfram.com/HashFunction.html


Verifying a File

Hash functions are great for verifying files since they are coded to run
quickly. But quick is not good for passwords.

So many ways of storing passwords run many hashes before storing the
password.

LastPass, for example, runs several thousand rounds of PBKDF2 SHA-256
salted hashes before storing your master password.

Greg Smith SCOUG January 21, 2017 3 / 19



XKCD on Passwords

Greg Smith SCOUG January 21, 2017 4 / 19



Passwords Are Made of Tokens

Cracking passwords cycles through sets of tokens, hashing them and
comparing them to a stolen password file that has the hashed and salted
passwords.

The size of the token set determines how easy it will be to crack with a
random search. Consider a simple password made of three tokens.

Consider a simple token set: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Cracking is easy with only 1000 combinations to check.

Greg Smith SCOUG January 21, 2017 5 / 19



Token Set Size

A larger set of tokens is the numbers and letters

[0-9a-zA-Z]

This set now needs to cycle through 623 = 238,328 combinations to check
all of the possibilities.

A larger set would be the 1000 words in the Thing Explainer dictionary
used by Randall Munroe.

This set now needs to cycle through 10003 = 1,000,000,000 combinations
to check all of the possibilities.

Greg Smith SCOUG January 21, 2017 6 / 19



Token Set Size (Continued)

An even larger set size is the Oxford English Dictionary with about
170,000 words. In this case, a three tokens add up to
170, 0003 = 4, 913, 000, 000, 000, 000 combinations to check.

XKCD is Wrong. ”CorrectHorseBatteryStaple” is long, but it is only four
tokens.

AND

Nobody will use the full set from the OED. They will probably choose
from the Thing Explainer Dictionary. So the search space will actually be
10004 = 1, 000, 000, 000, 000 combinations to check.

A list of 1,000 words only has about 6.6 bits of entropy for word, not 16
bits of entropy that XKCD claims.

If there is a system, then there is a weakness.

Greg Smith SCOUG January 21, 2017 7 / 19



Bootable USB Sticks

Creating a bootable DFSee flash drive has been a major fail. I tried using
the bootable CD-ROM with no luck at all. I got a little bit further along
with the Linux command versions.

I tried to follow the directions really, really, really, really carefully with no
luck.

The instructions about creating a bootable USB key say:

This can be done on OS/2 or eCS (tested) and on Windows or
Linux (both untested, but procedure should be exactly the same)

Oh, and at the start of the instructions there is also this bit of information:

It offers booting on most modern PCs using a 128MB or larger
memory stick, some Linux magic, the DFSee bootable CD ISO
and a copy of the DFSee linux program.

I went on a hunt for Linux magic.

Greg Smith SCOUG January 21, 2017 8 / 19



A Cross Platform Tool for Bootable USBs

I found UNetbootin as a tool to make bootable USB keys. It works on the
Mac and I was able to make bootable USB keys for various Linux
distributions.

I made a bootable USB key for the Ultimate Boot CD 5.6.3. Wow! All
kinds of nifty bootable tools.

AND

Instructions on how to add another ISO to the USB. Instructions that
work.

Greg Smith SCOUG January 21, 2017 9 / 19



Then I Found Out

I got to talking at the local Hacker Space and had a few recommendations
for Windows tools:

RUFUS

YUMI

When I tried to put one Linux distribution on USB Rufus told me that it
did not have a proper syslinux version for that ISO. Could Rufus download
a compatible version.

I approved the download and it worked.

Greg Smith SCOUG January 21, 2017 10 / 19



Another Revelation

I then tried another Linux ISO and then Rufus told me there were TWO
ways to make a bootable USB. The ISO was a Hybrid/ISO and I could

Use syslinux and have a FAT32 partition that I can add another Linux
ISO to later, or

Make a direct copy and the USB would be dedicated to that
distribution only.

Greg Smith SCOUG January 21, 2017 11 / 19



And Then I Tried DFSEE :(

When I fed RUFUS the DFSEE ISO he griped:

This is not a bootable-iso, or it uses a boot or compression
method that is unknown.

So the last time I asked: Is there a standard for making a bootable image?

I should have asked: How many ways can you make a bootable ISO and
convert that to a bootable USB key?

Or as Rudyard Kipling might say:

”There are nine and sixty ways of constructing tribal lays,
”And every single one of them is right!”

(From http://www.kiplingsociety.co.uk/poems_neolithic.htm)

Greg Smith SCOUG January 21, 2017 12 / 19

http://www.kiplingsociety.co.uk/poems_neolithic.htm


Something More Added After the Meeting

Leo Laport and Steve Gibson have discussed passwords on three recent
”Security Now” podcasts (#595, #596, and #595). The podcasts are at:

https://www.grc.com/securitynow.htm

Their take on XKCD is pretty much the same as what is above. Their
discussion, however, did prompt me to do a bit more research.

Steve Gibson did a good job of describing the math behind determining
the information entropy of a password.

Anyway, here is some additional notes on the XKCD examples.

Greg Smith SCOUG January 21, 2017 13 / 19

https://www.grc.com/securitynow.htm


The First XKCD Example: Tr0ub4dor&3

XKCD assigns bits of entropy as follows:

The base word: 16 bits

Capitalization: 1 bit

Substitutions: 3 bits

Punctuation: 4 bits

Numbers: 3 bits

Order: 1 bit

Total entropy for this eleven character password: 28 bits

Greg Smith SCOUG January 21, 2017 14 / 19



A Random Eleven Character Password

Now assume we are using a password manager to generate an eleven
character gibberish password for us. If we use the letters and numbers

[0-9a-zA-Z]

we have 62 characters and the information entropy for each character in
the set is given by:

log2(62) = 5.954 bits per character

The total entropy for the complete eleven character password is

11 ∗ log2(62) = 65.50 bits

Note that this exceeds the 44 bits of entropy that XKCD has determined
for ”CorrectHorseBatteryStaple”.

Greg Smith SCOUG January 21, 2017 15 / 19



An Extended Character Set

We can increase the information entropy when we note that the ASCII
character set has additional printable characters. For the complete set of
printable ASCII we have 96 printable characters. If we omit the space,
then the information entropy for each character in the set is given by:

log2(95) = 6.570 bits per character

The total entropy for the complete eleven character password is

11 ∗ log2(95) = 72.27 bits

Greg Smith SCOUG January 21, 2017 16 / 19



How Much Gibberish?

XKCD gets 44 bits of entropy from a 28 character long, four word pass
phrase. We can compare this to the number of characters in a gibberish
password needed for 44 bits of entropy. This is calculated assuming letters
and numbers to give:

44

log2(62)
= 7.390

So a gibberish password with eight characters has the same amount of
information as the 28 character pass phrase presented by XKCD. An
attack cycling through all of the eight character combinations will take
just as long as the four word pass phrase. (This assumes that we have the
same dictionary of 2048 common words used by the XKCD system. Note:
211 = 2048.)

Greg Smith SCOUG January 21, 2017 17 / 19



The Trade Offs

The big trade off is that some passwords and pass phrases must be easy to
remember. A random 8 character gibberish password is not going to work
very well to open the password manager on your phone. In that case, a
pass phrase may be suitable.

The second example from XKCD using common words illustrates a pass
phrase. However, XKCD does not explain how to make a ”good” pass
phrase. The Diceware method is one way to generate a random pass
phrase. The method is described at:

http://world.std.com/~reinhold/diceware.html

Alternate word lists for Diceware are available from the Free Software
Foundation at:

https://www.eff.org/deeplinks/2016/07/

new-wordlists-random-passphrases

Greg Smith SCOUG January 21, 2017 18 / 19

http://world.std.com/~reinhold/diceware.html
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases


The Trade Offs – Continued

Also, some systems may have arbitrary limitations. I have encountered
some on line systems that restrict password lengths to 16, 20, or 32
characters. Those systems will choke on ”CorrectHorseBatteryStaple”
since it is too long. Since the average length of an English word is about 5
characters†, a four word pass phrase may be too long in some cases.

Fortunately, many encryption tools such as GPG place no limits on the
length of a pass phrase.

Finally, some systems may insist on special characters. However, the
choice of acceptable punctuation may not include the full 95 printable
ASCII set. In other words, your mileage may vary.

† V.V. Bochkarevm, A.V. Shevlyakova, and V.D. Solovyev. ”Average
Word Length Dynamics as Indicator of Cultural Changes in Society,”
preprint 1208.6109 available from https://arxiv.org

Greg Smith SCOUG January 21, 2017 19 / 19

https://arxiv.org

